
6 Geometry of Complex Numbers

Thanks to Tristan Needham’s Visual Complex Analysis for many of the problems/examples and to Josh Zucker
for most of the text.
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Figure 1: iz is perpendicu-
lar to z.

Figure 2: The complex
number A = 4 + 3i.

Figure 3: Breaking up Az into its com-
ponents, we can observe the geometry of
complex multiplication.

Last year, you (were supposed to have) mastered the art of manipulating complex numbers. We will build on
that background in this section. Throughout the rest of the book, you can reinforce your skills with a healthy
dose of "Vitamin i."

There are at least two ways to think about the equation x3 = 1. One way is to factor the equation into
(x − 1)(x2 + x + 1) and find the solutions using the quadratic formula. The other way is to use DeMoivre’s
theorem:

(r1(cos θ + i sin θ))(r2(cosϕ+ i sinϕ)) = (r1r2)(cos(θ + ϕ) + i sin(θ + ϕ)).

Recall that cis θ = cos θ+ i sin θ. z = r cis θ is a complex number r units away from the origin and making
an angle θ with the x axis, taken counterclockwise. Let’s rewrite DeMoivre’s theorem using cis:

(r1 cis θ)(r2 cisϕ) = (r1r2)(cis(θ + ϕ)).

Notice that the magnitudes are multiplied and the angles are added.6 By repeatedly applying DeMoivre’s
theorem, we know that (r cis θ)n = rn cisnθ. If x = r cis θ, then x3 = r3 cis 3θ. Going back to our original
x3 = 1, since 1 = cis(2πk) for any integer k, we find that r = 1 and 3θ = 2πk. This yields three solutions:
1 cis 0, 1 cis 2π

3 , 1 cis 4π
3 . Any other value of θ = 2kπ

3 reduces to one of these values because of the periodicity
of cis. These correspond to k = 0, 1, 2; other values of k produce coterminal angles and are therefore
duplicates. You can confirm that these three solutions are the same solutions that you obtain from factoring.

You can prove DeMoivre’s theorem using the angle addition formulae for cos and sin. You can also under-
stand it through pure geometry. Consider a complex number z = a + bi, being multiplied by A = 4 + 3i. z
forms an angle of θ with the real axis, and A forms an angle of ϕ. In Figure 1, observe that iz is perpendicular
to z for any z. Figure 2 depicts the complex number A. Finally, in Figure 3, you see the multiplication carried
out: Az = (4 + 3i)z = 4z + 3iz. These two components, 4z and 3iz, are indicated.

Combining the observation in Figure 1 and our knowledge from geometry, we know the triangles in Figure
2 and 3 are similar. Since the scaling is by a factor of |z|, multiplying A by z has the effect rotating z by the
angle of A, and multiplying it by the length of A. This method of proving DeMoivre’s theorem for A = 4 + 3i
works for all complex numbers A = a+ bi.

Some notation: The angle θ of a complex number z = a+bi is often called the argument, written as Arg z.
The real part of z is written Re(z) = a, and the imaginary part of z is written Im(z) = b. Note that Im(z) is a
real number b, not an imaginary number bi. Finally, the complex conjugate of z, in which the imaginary part
is negated, is written with a bar on top: z = a− bi.

1. Explain why iz is perpendicular to z without using DeMoivre’s theorem.

2. How does Arg z relate to Arg z? (Hint: symmetry!)

3. Compute zz and relate it to the cis form of z.

4. Explain, using a picture, why tan(Arg z) = Im(z)
Re(z) .

6What else is added when you multiply? Exponents! In fact, cis θ = eiθ , but that’s another story.
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5. Divide a+bi
c+di by rationalizing the denominator.

6. Divide r1 cis θ
r2 cisϕ using DeMoivre’s theorem.

7. Compare and contrast the methods of division in Problems 5 and 6. Which is more convenient? Or
does it depend on the circumstance?

8. (a) If z = r cis θ, what is 1
z?

(b) Explain how this result shows 1
a+bi = a−bi

a2+b2 , without having to rationalize the denominator. (Hint:
use Problems 3, 4, and 7.)

9. Compute (1 + i)13; pencil, paper, and brains only. No calculators!

10. Compute (1+i
√
3)3

(1−i)2 without a calculator.

11. Draw cis
(
π
4

)
+ cis

(
π
2

)
. Use your picture to prove an expression for tan

(
3π
8

)
. (Hint: Add them as

vectors.)

12. Solve z3 = 1, and show that its solutions under the operation of multiplication form a group, isomorphic
to the rotation group of the equilateral triangle. Write a group table!

13. (a) Find multiplication groups of complex numbers which are isomorphic to the rotation groups for

i. a non-square rectangle, and ii. a regular hexagon.

(b) Make a table for each group.

(c) Compare the regular hexagon’s group to the dihedral group of the equilateral triangle, D3. Con-
sider: how are they the same? How are they different? Is the difference fundamental?

14. Which of the following sets is a group under (i) addition and (ii) multiplication?

(a) {0}
(b) {1}
(c) {0, 1}
(d) {−1, 1}

(e) {1,−1, i,−i}
(f) {naturals}
(g) {integers}
(h) {rationals},Q

(i) {Q without zero}
(j) {complex numbers},C
(k) {C without zero}

DeMoivre’s theorem is the “universal” trig identity, in the sense that it can be used to calculate every other trig
identity. For example, suppose you want an identity for cos 3θ. For convenience, let c = cos θ and s = sin θ.
Then we have:

cis 3θ = (cis θ)3 [DeMoivre’s Theorem]

= (c+ is)3 [Definition of cis ]

= c3 + 3c2si− 3cs2 − s3i [Binomial expansion]

cos 3θ + i sin 3θ = (c3 − 3cs2) + i(3c2s− s3). [Combining like terms]

Equating real parts on both sides, cos 3θ = cos3 θ − 3 cos θ sin2 θ.

15. Prove that (r1 cis θ)(r2 cisϕ) = r1r2 cis(θ+ϕ) using brute force and the angle-sum trig identities for cos
and sin. Do you prefer this method or the one on the previous page? Which method gives you a better
understanding of why the formula works?

16. Find an analogous identity for sin 3θ. Most of the work is already done for you!

17. Your friend’s textbook says cos 3θ = 4 cos3 θ − 3 cos θ, different from our identity. Who’s right?

15



0 = A

B

C

D

P

R

Q

S

m

n

A

B

C

D

a

a
b

b

c

c
dd

Figure 4: The quadrilateral with four
squares.
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Figure 5: 2(a+ b+ c+ d) = 0. Figure 6: P = a+ ia.

Let’s apply complex numbers to a geometry problem. We want to prove that if we construct squares with
centers P , Q, R, S on the sides of any quadrilateral ABCD, as shown in Figure 5, then (i) PR ⊥ QS and
(ii) PR ∼= QS. In other words, segments joining centers of opposite squares are perpendicular and the same
length.

We represent all points in the figure as complex numbers. For convenience, let A = 0 be the origin. The
edges of the quadrilateral can be thought of as vectors in the form of complex numbers, and are found using
subtraction; for example, the edge from A to B is B − A. Similarly, the edge from B to C is C − B. Now,
define complex numbers

a =
B −A

2
, b =

C −B

2
, c =

D − C

2
, d =

A−D

2
.

a is the vector halfway along
−−→
AB, b is halfway along

−−→
BC, etc.; see Figure 4. We also have

a+ b+ c+ d =
B −A+ C −B +D − C +A−D

2
=

0

2
= 0.

More geometrically, this cancellation is because 2(a+ b+ c+d) = 2a+2b+2c+2d is the sum of the vectors−−→
AB,

−−→
BC,

−−→
CD,

−−→
DA, which is just

−→
AA =

−→
0 (see Figure 5).

P,Q,R, S are also complex numbers. Let m = R− P and n = Q− S be our two segments PR and QS.
To prove that they are perpendicular, recall that z is perpendicular to iz for any complex z ̸= 0, so we just
need to prove that n = ±im.

We now need to relate P,Q,R, S back to a, b, c, d. Remembering that a is the vector halfway along
−−→
AB,

we can see that P = a+ ia. a takes you from the origin A to the midpoint of AB, then ia takes you to P . This
shown in Figure 6. We can extend this logic to the other points, of course.

18. Now you can finish the rest of the proof.

(a) Draw a, b, c, d,m, n for the quadrilateral on the previous page.

(b) Why does showing n = ±im prove the segments are (i) perpendicular and (ii) the same length?

(c) Explain why Q = 2a+ b+ ib.

(d) Find formulae for R and S in terms of c and d.

(e) Find m and n in terms of a, b, c, and d.

(f) Check that n− im = 0, using the fact that a+ b+ c+ d = 0.
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19. In the previous problem, we drew squares outside a quadrilateral and connected their centers. Conjec-
ture what happens if we draw equilateral triangles outside a triangle and connect their centers. Prove
your conjecture using complex numbers.

20. The hard way to find an identity for tan 3θ is to divide the identity for sin and cos that we already found.
Try it. Make sure your answer is in terms of tan only!

21. An easier way to get an identity for tan 3θ starts with setting z = 1 + i tan θ.

(a) Why is Arg z = θ?

(b) Why is tan 3θ = Im(z3)
Re(z3)?

(c) Use (b) to find an identity for tan 3θ.

22. Find multiplication groups of complex numbers isomorphic to rotation groups for

(a) the regular octagon; (b) the regular pentagon.

23. Make tables for

(a) the rotation group of the regular octagon;

(b) the dihedral group of the square.

(c) Is the difference between them fundamental?

24. Which of the following tables defines a group? Why or why not?

(a)

$ I A B C D
I I A B C D
A A C D B I
B B I C D A
C C D A I B
D D B I A C

(b)

# I A B C D
I I A B C D
A A B C D I
B B C D I A
C C D I A B
D D I A B C

25. Name some subsets of the complex numbers that are groups under multiplication. I can name an infinite
number of both finite and infinite groups with this property, so after you list a few of each type, try to
generalize.

26. Prove with a diagram that if |z| = 1, then Im
(

z
(z+1)2

)
= 0.

27. Prove geometrically that if |z| = 1, then |1− z| =
∣∣∣2 sin

(
Arg z

2

)∣∣∣.

28. (a) Prove that if (z−1)10 = z10, then Re(z) = 1
2 . (Hint: If two numbers are equal, they have the same

magnitude.)

(b) How many solutions does this equation have?

29. I claim that eiθ = cos θ + i sin θ = cis θ, for θ in radians.

(a) Find e−iθ. (b) Find eiθ+e−iθ

2 . (c) Find eiθ−e−iθ

2i .

30. Use your new, complex definitions for cos and sin to find:

(a) cos2 θ + sin2 θ

(b) tan θ

(c) cos 2θ

(d) sin 2θ

(e) What kind of group is generated by
{
eiθ, e−iθ

}

under the operation of multiplication if θ is an
integer? A rational multiple of π?

31. You’ve used the quadratic equation throughout high school, but there’s also a cubic equation that finds
the roots of any cubic. Let’s derive it, starting with the cubic x3 + bx2 + cx+ d = 0.
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(a) Make the substitution x = y− b
3 . Combine like terms to create an equation of the form y3− 3py−

2q = 0, with p, q in terms of b, c, and d.

(b) Rearrange this equation as y3 = 3py + 2q.

(c) Make the substitution y = s + t into (b), and prove that y is a solution of the cubic in part (a) if
st = p and s3 + t3 = 2q.

(d) Eliminate t between these two equations to get a quadratic in s3.

(e) Solve this quadratic to find s3. By symmetry, what is t3?

(f) Find a formula for y in terms of p and q. What about a formula for x?

(g) What if we started with ax3 + bx2 + cx + d = 0, with a coefficient in front of the x3 term as well?
Can you come up with a formula for x?

32. Starting with the same cubic as in Problem 31b.

(a) Let c = cos θ. Remember that cos 3θ = 4c3 − 3c, as we proved. Substitute y = 2c
√
p into

y3 = 3py + 2q to obtain 4c3 − 3c = q
p3/2 .

(b) Provided that q2 ≤ p3, show that y = 2
√
p cos

(
1
3 (θ + 2πn)

)
, where n is an integer. Why does this

yield all three solutions?

(c) Explain how you would find θ from p and q, and how we would use what we have found to solve
an arbitrary cubic ax3 + bx2 + cx+ d = 0.
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